10 Mysteries Of Science That They Still Have Not Explained

 

#5 on the list has a related video below:

5. Are there extra dimensions of space?

I don’t know why people keep thinking this is a mystery, as I have on several occasions pointed out that there are no extra dimensions. However many there are, they are all absolutely necessary. Posed properly, this question should be how many dimensions of space are there? (For that matter, you could also ask about how many time dimensions there are, but that might overlap with No. 4.) Many physicists believe more dimensions than the ordinary three will be needed for physics to make sense of the universe. (Don’t even ask if they’re talking about bosonic or fermionic dimensions.) A key to understanding this issue is the mathematics of Calabi-Yau manifolds, which can curl up in gazillions of different ways to prevent easy detection of the additional dimensions’ existence. And that makes it really hard to figure out which of the gazillion possibilities would correspond to the universe we inhabit (unless there is some sort of fixed point theorem that would choose one, like a Nash equilibrium in game theory). In any event, anyone attempting to solve this riddle should first read Edwin Abbott’s Flatland, in which the protagonist character, A. Square, demonstrates the existence of an extra dimension and is promptly thrown in jail.

4. The nature of time

3. Quantum gravity

2. Does intelligent life exist elsewhere?

1. The meaning of quantum entanglement

All sorts of quantum mysteries remain unsatisfactorily resolved, but maybe the rest would succumb if entanglement does. Entanglement occurs in systems with widely separated parts that share a common history; a measurement of one of the parts reveals what you will find out when you measure its distant relative. Entanglement is a fact of nature, well-established by experiment. It suggests that time and space do not constrain quantum phenomena the way they do ordinary human activity. Among the latest intriguing aspects of entanglement to be studied involves black holes. It seems that black holes can be entangled, which apparently is equivalent to their being connected by a wormhole. Related work suggests that space, time and gravity are all part of a vast quantum entanglement network. Since both the evolution of networks and quantum entanglement fit nicely into game theory, solving all sorts of mysteries might boil down to viewing the world from a game-theoretical perspective. But maybe that will still be too hard for human brains — it might take advanced artificial intelligence, which, as thispaper suggests, might be created with the help of some version of quantum game theory.

And below is a video related to #5 on the list…enjoy!

thanks to sciencenews.org for the great info



*

*

Top